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1. INTRODUCTION

Recently Sharma and Tzimbalario announced in [4] a generalization of a
result of Subbotin which is contained in [5]. Specifically, they consider the
following problem.

Let Yl' Y2 ,... , Yn be real constants and Ln(D) the constant coefficient
differential operator given by

n d
Ln(D) = 1] (D - Yi), D = dx .

For a given bi-infinite sequence {Yk}~oo set

n n

L1 L
nYm = TI (E - eY') Ym = L rkEkYm

i~l k~O

where EYm = Ym+1 . Then for symmetric differential operators,

they determine the exact value of the supremum of

inf sup I Ln(D) j(x)1 ,
f(k)~Yk XER

kE{O, ±l, ±2,... ,} = Z,

over all sequences Yk with I LI L nYm I :< 1, m E Z. The case Yi = °was con
sidered by Subbotin [5].

In this paper we provide a further generalization of Subbotin's theorem
which encompasses the above result as well. This theorem relies on a recent
result contained in [2] and in this sense, our subsequent remarks are an adden
dum to this paper.
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2. THE PROBLEM

Let ep(x) be a P61ya frequency function on (- 00, 00). Thus we are assuming
that the translation kernel, K(x, y) = ep(x - y) is totally positive on (-00, (0),
that is,

K (Xl"'" Xm
) = ~et II K(Xi ,Yi)11 ): 0,

YI , ... , Ym I,}-I, ..• ,m

for all Xl < ... < Xm , YI < ... < Ym and m ): 1.
A basic property ofP61ya frequency functions tells us that the support of ep

is either a finite, half-infinite or infinite interval and ep(x) will decay exponen
tially fast as X ~ ±oo, [1, p. 332].

We will call a P61ya frequency function ep nondegenerate if for every
N ): 0, the translates {ep(x - j): Ij I ~ N} are linearly independent over
[-N-I, N + 1].

THEOREM. Let ep be a nondegenerate P6/ya frequency function. Then

inf sup Ih(x)I ~ sup Idi I 1 I if) )1 d
hEH(d) XER IEZ fo X X

where

H(d) = lh E LOO(- 00, 00): L: ep(x - k) h(x) dx = dk , k Ezl
and

00

t/J(x) = L ep(x - k)(-I)k,
-00

and this inequality is sharp.

Before we prove this result we will discuss the special case referred to
earlier.

Let epn(x) be the unique solution of LiD)y = 0 satisfying the condition

ep~)(O) = 0v.n-l , V = 0, 1,.. " n - 1.

Then, by the definition of LIL n it follows that

and consequently

LI Lnf(x) = foo Bn(x - t) Ln(D) f(t) dt
-00

(1)
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where Bn(x) = ihnepn(x+) = I:~=1 rkepn(x + k)+, X+ = x, for x;;?:°and zero
otherwise.

Bn(t) is the B-spline for the differential operator Ln and it is known that
Bn(t) is a nondegenerate P6lya frequency function [1, Chapter 10, Sect. 4].

Now, ifj(k) = Yk then according to (1)

dk = LI LnYk = f'" Bn(k - t) Ln(D) jet) dt.
-'"

Therefore the above theorem implies

inf sup' Ln(D)f(x)I ::::;:; sup I L1 LnYk I 1 I !fi ~ )1 d (2)
f(k)=Yk XER k Jon X X

where

'"
!fin(x) = L (-l)k Bn(x - k).

The function I::", tkBn(x - k) was studied in [2] where it was shown that
for each t it has exactly one simple zero in [0, I). When

(3)

it easily follows that

!finCl - x) = (-1 )n+1!fin(x).

Thus we see that when (3) holds the only zero of !fin(x) in [0, 1) is a simple
zero at ! when n is even and a simple zero at 0 when n is odd. This fact
allows for the simplification of the best constant in (2), see [4] for further
details.

We now present a proof of the theorem.

Proof For every N;;?: 0 our hypothesis guarantees that the functions
ep(x + N), ... , ep(x - N) form a weak Chebyshev system on [-N-1, N + 1].
Consequently, according to Theorem 5 of [2] we have

AN(d) = inf sup Ih(x) ,
hEHN(d) Ixl';;;;N+l

::::;:; (inf sup' h(x)l) max I dj I ,
hEHN(e) Ixl';;;;N+1 III<N

where
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and e = «-1)-N-\ ..., (_I)N+1). We will now show that for every d =
{dd~)oo, SUPk I dk I < 00,

lim AN(d) = A(d) = inf sup Ih(x)I .
N->oo hEH(d) XER

To this end, let ho(x) = A(-I)i,j ~ x <j + 1 where

A-I = f I f(x) I dx.

Then an easy computation shows that

r ep(x - k) ho(x) dx = (-l)k, k E Z.
-00

Consequently, AN(e) < Afor all N. A standard argument using w*-compact
ness in D[-N - 1, N + 1] establishes the existence of a hN E Loo[-N - 1,
N + 1] with hN E HN(d) and

Moreover, since AN(d) ~ A the sequence hNXN, where XN(X) is the charac
teristic function of [-N - 1, N + 1] is a uniformly bounded sequence in
Loo(- 00, (0). Thus we are assured of the existence of a subsequence {hN'(x)}
which converges w* to a function n(x) E L oo(- 00, 00), i.e.

#~ L: f(x) hN , (x) dx = L:f(x) n(x) dx

for all f E D(- 00, (0). Clearly 1i E H(d) and A(d) = SUpxER In(x)I =
limN~oo AN(d) as well.

Thus we have established that A(d) ~ A(e) II dll oo • We will be finished
when we demonstrate that A(e) = A. For this purpose, we let h be any
function in H(e). Then -hex + 1) is also in H(e). Moreover, since H(e) is a
convex set, the function

GN(x) = ~ £(-I)j hex + j)
j~1

is again in H(e) for all N. As before, since SUpxER I GN(x)I ~ SUP"'ER Ih(x)l,
{GN } has a convergent sequence {GN '} which converges w* to aGE Loo. Since
for every a < b

b 1 ) b 1 Jbf GN(x + I) dx = - (1 + IV JGN+l(x) dx + IV hex + 1) dx
a a a
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we have G(x + 1) = -G(x) and hence

sup I G(x)] ,;:;; sup I h(x) I .
O~x::::;;l xER

Now,

f if;(x) G(x) dx = f (-l)k f ep(x + k) G(x) dx
o -ro 0

= fro ep(x) G(x) dx = 1,
-ro

the last inequality follows from the fact that G E B(e). Consequently,

1 ,;:;; A-I sup I G(x) I ,;:;; A-I sup Ih(x) [
O~x<l xER

and this inequality completes the proof.
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