On an Extremal Problem of Subbotin Concerning Finite Differences and Derivatives

CHARLES A. MICCHELLI

IBM, Box 218, Yorktown Heights, New York 10598

Communicated by Oved Shisha

Received November 30, 1977

1. Introduction

Recently Sharma and Tzimbalario announced in [4] a generalization of a result of Subbotin which is contained in [5]. Specifically, they consider the following problem.

Let γ_1 , γ_2 ,..., γ_n be real constants and $L_n(D)$ the constant coefficient differential operator given by

$$L_n(D) = \prod_{i=1}^n (D - \gamma_i), D = \frac{d}{dx}.$$

For a given bi-infinite sequence $\{y_k\}_{-\infty}^{\infty}$ set

$$\Delta_{L}^{n}y_{m} = \prod_{i=1}^{n} (E - e^{\gamma_{i}}) y_{m} = \sum_{k=0}^{n} r_{k}E^{k}y_{m}$$

where $Ey_m = y_{m+1}$. Then for symmetric differential operators,

$$L_n(-D) = (-1)^n L_n(D),$$

they determine the exact value of the supremum of

$$\inf_{f(k)=y_k} \sup_{x\in R} |L_n(D)f(x)|, \qquad k\in\{0,\pm 1,\pm 2,...,\} = Z,$$

over all sequences y_k with $|\Delta_L^n y_m| \leq 1$, $m \in \mathbb{Z}$. The case $\gamma_i = 0$ was considered by Subbotin [5].

In this paper we provide a further generalization of Subbotin's theorem which encompasses the above result as well. This theorem relies on a recent result contained in [2] and in this sense, our subsequent remarks are an addendum to this paper.

2. The Problem

Let $\phi(x)$ be a Pólya frequency function on $(-\infty, \infty)$. Thus we are assuming that the translation kernel, $K(x, y) = \phi(x - y)$ is totally positive on $(-\infty, \infty)$, that is,

$$K\begin{pmatrix} x_1,...,x_m \\ y_1,...,y_m \end{pmatrix} = \det_{i,j=1,...,m} ||K(x_i,y_j)|| \ge 0,$$

for all $x_1 < \cdots < x_m$, $y_1 < \cdots < y_m$ and $m \ge 1$.

A basic property of Pólya frequency functions tells us that the support of ϕ is either a finite, half-infinite or infinite interval and $\phi(x)$ will decay exponentially fast as $x \to \pm \infty$, [1, p. 332].

We will call a Pólya frequency function ϕ nondegenerate if for every $N \ge 0$, the translates $\{\phi(x-j): |j| \le N\}$ are linearly independent over [-N-1, N+1].

THEOREM. Let ϕ be a nondegenerate Pólya frequency function. Then

$$\inf_{h \in H(d)} \sup_{x \in \mathbb{R}} |h(x)| \leqslant \sup_{i \in \mathbb{Z}} |d_i| \frac{1}{\int_0^1 |\psi(x)| dx}$$

where

$$H(d) = \left\{ h \in L^{\infty}(-\infty, \infty) : \int_{-\infty}^{\infty} \phi(x-k) h(x) dx = d_k, k \in Z \right\}$$

and

$$\psi(x) = \sum_{-\infty}^{\infty} \phi(x-k)(-1)^k,$$

and this inequality is sharp.

Before we prove this result we will discuss the special case referred to earlier.

Let $\phi_n(x)$ be the unique solution of $L_n(D)y = 0$ satisfying the condition

$$\phi_n^{(\nu)}(0) = \delta_{\nu,n-1}, \ \nu = 0, 1, ..., n-1.$$

Then, by the definition of Δ_L^n it follows that

$$\Delta_L^n e^{\nu_j x} = 0, j = 1,..., n,$$

and consequently

$$\Delta_L^n f(x) = \int_{-\infty}^{\infty} B_n(x-t) L_n(D) f(t) dt$$
 (1)

where $B_n(x) = \Delta_L^n \phi_n(x_+) = \sum_{k=1}^n r_k \phi_n(x_+) + \sum_{k=1}^n r_$

 $B_n(t)$ is the B-spline for the differential operator L_n and it is known that $B_n(t)$ is a nondegenerate Pólya frequency function [1, Chapter 10, Sect. 4]. Now, if $f(k) = y_k$ then according to (1)

$$d_k = \Delta_L^n y_k = \int_{-\infty}^{\infty} B_n(k-t) L_n(D) f(t) dt.$$

Therefore the above theorem implies

$$\inf_{f(k)=y_k} \sup_{x \in \mathbb{R}} |L_n(D) f(x)| \leqslant \sup_k |\Delta_L^n y_k| \frac{1}{\int_0^1 |\psi_n(x)| \, dx}$$
 (2)

where

$$\psi_n(x) = \sum_{-\infty}^{\infty} (-1)^k B_n(x-k).$$

The function $\sum_{-\infty}^{\infty} t^k B_n(x-k)$ was studied in [2] where it was shown that for each t it has exactly one simple zero in [0, 1). When

$$L_n(D) = (-1)^n L_n(-D) (3)$$

it easily follows that

$$\psi_n(1-x)=(-1)^{n+1}\psi_n(x).$$

Thus we see that when (3) holds the only zero of $\psi_n(x)$ in [0, 1) is a simple zero at $\frac{1}{2}$ when n is even and a simple zero at 0 when n is odd. This fact allows for the simplification of the best constant in (2), see [4] for further details.

We now present a proof of the theorem.

Proof. For every $N \ge 0$ our hypothesis guarantees that the functions $\phi(x+N),..., \phi(x-N)$ form a weak Chebyshev system on [-N-1, N+1]. Consequently, according to Theorem 5 of [2] we have

$$\begin{split} A_N(d) &= \inf_{h \in H_N(d)} \sup_{|x| \leqslant N+1} |h(x)| \\ &\leqslant \left(\inf_{h \in H_N(e)} \sup_{|x| \leqslant N+1} |h(x)|\right) \max_{|f| \leqslant N} |d_f|, \end{split}$$

where

$$H_N(d) = \left\{ h \in L^{\infty}[-N-1, N+1] : \int_{-N-1}^{N+1} \phi(x-j) \, h(x) \, dx = d_j \,, |j| \leqslant N \right\},$$

and $e = ((-1)^{-N-1},...,(-1)^{N+1})$. We will now show that for every $d = \{d_k\}_{-\infty}^{\infty}$, $\sup_k |d_k| < \infty$,

$$\lim_{N\to\infty} A_N(d) = A(d) = \inf_{h\in H(d)} \sup_{x\in R} |h(x)|.$$

To this end, let $h_0(x) = \lambda(-1)^j$, $j \le x < j+1$ where

$$\lambda^{-1} = \int_0^1 |\psi(x)| dx.$$

Then an easy computation shows that

$$\int_{-\infty}^{\infty} \phi(x-k) h_0(x) dx = (-1)^k, k \in \mathbb{Z}.$$

Consequently, $A_N(e) < \lambda$ for all N. A standard argument using w^* -compactness in $L^1[-N-1, N+1]$ establishes the existence of a $h_N \in L^{\infty}[-N-1, N+1]$ with $h_N \in H_N(d)$ and

$$A_N(d) = \sup_{|x| \leq N+1} |h_N(x)|.$$

Moreover, since $A_N(d) \leq \lambda$ the sequence $h_N \chi_N$, where $\chi_N(x)$ is the characteristic function of [-N-1, N+1] is a uniformly bounded sequence in $L^{\infty}(-\infty, \infty)$. Thus we are assured of the existence of a subsequence $\{h_{N'}(x)\}$ which converges w^* to a function $\overline{h}(x) \in L^{\infty}(-\infty, \infty)$, i.e.

$$\lim_{N\to\infty}\int_{-\infty}^{\infty}f(x)\,h_N\,,(x)\,dx=\int_{-\infty}^{\infty}f(x)\,\bar{h}(x)\,dx$$

for all $f \in L^1(-\infty, \infty)$. Clearly $\bar{h} \in H(d)$ and $A(d) = \sup_{x \in R} |\bar{h}(x)| = \lim_{N \to \infty} A_N(d)$ as well.

Thus we have established that $A(d) \le A(e) \| d \|_{\infty}$. We will be finished when we demonstrate that $A(e) = \lambda$. For this purpose, we let h be any function in H(e). Then -h(x+1) is also in H(e). Moreover, since H(e) is a convex set, the function

$$G_N(x) = \frac{1}{N} \sum_{j=1}^{N} (-1)^j h(x+j)$$

is again in H(e) for all N. As before, since $\sup_{x \in R} |G_N(x)| \leq \sup_{x \in R} |h(x)|$, $\{G_N\}$ has a convergent sequence $\{G_{N'}\}$ which converges w^* to a $G \in L^{\infty}$. Since for every a < b

$$\int_a^b G_N(x+1) \, dx = -\left(1 + \frac{1}{N}\right) \int_a^b G_{N+1}(x) \, dx + \frac{1}{N} \int_a^b h(x+1) \, dx$$

we have G(x + 1) = -G(x) and hence

$$\sup_{0\leqslant x\leqslant 1}|G(x)|\leqslant \sup_{x\in R}|h(x)|.$$

Now,

$$\int_0^1 \psi(x) G(x) dx = \sum_{-\infty}^{\infty} (-1)^k \int_0^1 \phi(x+k) G(x) dx$$
$$= \int_{-\infty}^{\infty} \phi(x) G(x) dx = 1,$$

the last inequality follows from the fact that $G \in H(e)$. Consequently,

$$1 \leqslant \lambda^{-1} \sup_{0 \leqslant x \leqslant 1} |G(x)| \leqslant \lambda^{-1} \sup_{x \in R} |h(x)|$$

and this inequality completes the proof.

REFERENCES

- 1. S. KARLIN, "Total Positivity," Vol. I, Stanford Univ. Press, Stanford, Calif., 1968.
- C. A. MICCHELLI, Best L¹-approximation by weak Chebyshev systems and the uniqueness of interpolating perfect splines, J. Approximation Theory 19 (1977), 1-14.
- C. A. MICCHELLI, Cardinal L-splines, in "Studies in Splines and Approximation Theory" (S. Karlin, C. A. Micchelli, A. Pinkus, and I. J. Schoenberg, Eds.), Academic Press, New York, 1976.
- A. SHARMA AND J. TZIMBALARIO, A generalization of a result of Subbotin, in "Approximation Theory" (G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Eds.), Academic Press, New York, 1976; as: Certain differential operators and generalized differences,"
 Mat. Zametki 21 (1977), 161-172.
- Ju. N. Subbotin, On the relation between finite differences and the corresponding derivatives, Proc. Steklov Inst. Math. 78 (1965), 23-42.